skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Watanabe, Takamitsu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cherifi, Hocine (Ed.)
    We review a class of energy landscape analysis method that uses the Ising model and takes multivariate time series data as input. The method allows one to capture dynamics of the data as trajectories of a ball from one basin to a different basin to yet another, constrained on the energy landscape specified by the estimated Ising model. While this energy landscape analysis has mostly been applied to functional magnetic resonance imaging (fMRI) data from the brain for historical reasons, there are emerging applications outside fMRI data and neuroscience. To inform such applications in various research fields, this review paper provides a detailed tutorial on each step of the analysis, terminologies, concepts underlying the method, and validation, as well as recent developments of extended and related methods. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. Abstract Electroencephalogram (EEG) microstate analysis entails finding dynamics of quasi-stable and generally recurrent discrete states in multichannel EEG time series data and relating properties of the estimated state-transition dynamics to observables such as cognition and behavior. While microstate analysis has been widely employed to analyze EEG data, its use remains less prevalent in functional magnetic resonance imaging (fMRI) data, largely due to the slower timescale of such data. In the present study, we extend various data clustering methods used in EEG microstate analysis to resting-state fMRI data from healthy humans to extract their state-transition dynamics. We show that the quality of clustering is on par with that for various microstate analyses of EEG data. We then develop a method for examining test–retest reliability of the discrete-state transition dynamics between fMRI sessions and show that the within-participant test–retest reliability is higher than between-participant test–retest reliability for different indices of state-transition dynamics, different networks, and different data sets. This result suggests that state-transition dynamics analysis of fMRI data could discriminate between different individuals and is a promising tool for performing fingerprinting analysis of individuals. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Energy landscape analysis is a data‐driven method to analyse multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test–retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e. within‐participant reliability) than across different sets of sessions from different participants (i.e. between‐participant reliability). We show that the energy landscape analysis has significantly higher within‐participant than between‐participant test–retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test–retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual‐level energy landscape analysis for given data sets with a statistically controlled reliability. 
    more » « less